 描述
Farmer John's cows refused to run in his marathon since he chose a path much too long for their leisurely lifestyle. He therefore wants to find a path of a more reasonable length. The input to this problem consists of the same input as in "Navigation Nightmare",followed by a line containing a single integer K, followed by K "distance queries". Each distance query is a line of input containing two integers, giving the numbers of two farms between which FJ is interested in computing distance (measured in the length of the roads along the path between the two farms). Please answer FJ's distance queries as quickly as possible!
 输入
 * Line 1: Two spaceseparated integers: N and M
* Lines 2..1+M: Each line contains four spaceseparated entities, F1, F2, L, and D that describe a road. F1 and F2 are numbers of two farms connected by a road, L is its length, and D is a character that is either 'N', 'E', 'S', or 'W' giving the direction of the road from F1 to F2
* Line 2+M: A single integer, K. 1 <= K <= 10,000
* Lines 3+M..2+M+K: Each line corresponds to a distance query and contains the indices of two farms.
(1 <= M < 40,000)
 输出
 * Lines 1..K: For each distance query, output on a single line an integer giving the appropriate distance.
 样例输入
7 6
1 6 13 E
6 3 9 E
3 5 7 S
4 1 3 N
2 4 20 W
4 7 2 S
3
1 6
1 4
2 6
 样例输出
13
3
36
 提示
 Farms 2 and 6 are 20+3+13=36 apart.
#Navigation Nightmare Description#
Farmer John's pastoral neighborhood has N farms (2 <= N <= 40,000), usually numbered/labeled 1..N. A series of M (1 <= M < 40,000) vertical and horizontal roads each of varying lengths (1 <= length <= 1000) connect the farms. A map of these farms might look something like the illustration below in which farms are labeled F1..F7 for clarity and lengths between connected farms are shown as (n):
F1  (13)  F6  (9)  F3
 
(3) 
 (7)
F4  (20)  F2 
 
(2) F5

F7
Being an ASCII diagram, it is not precisely to scale, of course.
Each farm can connect directly to at most four other farms via roads that lead exactly north, south, east, and/or west. Moreover, farms are only located at the endpoints of roads, and some farm can be found at every endpoint of every road. No two roads cross, and precisely one path
(sequence of roads) links every pair of farms.
FJ lost his paper copy of the farm map and he wants to reconstruct it from backup information on his computer. This data contains lines like the following, one for every road:
There is a road of length 10 running north from Farm #23 to Farm #17
There is a road of length 7 running east from Farm #1 to Farm #17
...
As FJ is retrieving this data, he is occasionally interrupted by questions such as the following that he receives from his navigationallychallenged neighbor, farmer Bob:
What is the Manhattan distance between farms #1 and #23?
FJ answers Bob, when he can (sometimes he doesn't yet have enough data yet). In the example above, the answer would be 17, since Bob wants to know the "Manhattan" distance between the pair of farms.
The Manhattan distance between two points (x1,y1) and (x2,y2) is just x1x2 + y1y2 (which is the distance a taxicab in a large city must travel over city streets in a perfect grid to connect two x,y points).
When Bob asks about a particular pair of farms, FJ might not yet have enough information to deduce the distance between them; in this case, FJ apologizes profusely and replies with "1".
 来源
 USACO 2004 February